Monday, April 27, 2020

Only Once In A Lifetime Will A New Invention Come About To Touch Every

Only once in a lifetime will a new invention come about to touch every aspect of our lives. Such a device that changes the way we work, live, and play is a special one, indeed. The Microprocessor has been around since 1971 years, but in the last few years it has changed the American calculators to video games and computers (Givone 1). Many microprocessors have been manufactured for all sorts of products; some have succeeded and some have not. This paper will discuss the evolution and history of the most prominent 16 and 32 bit microprocessors in the microcomputer and how they are similar to and different from each other. Because microprocessors are a subject that most people cannot relate to and do not know much about, this paragraph will introduce some of the terms that will be in- volved in the subsequent paragraphs. Throughout the paper the 16-bit and 32-bit mi- croprocessors are compared and contrasted. The number 16 in the 16-bit microproces- sor refers how many registers there are or how much storage is available for the mi- croprocessor (Aumiaux, 3). The microprocessor has a memory address such as A16, and at this address the specific commands to the microprocessor are stored in the memory of the computer (Aumiaux, 3). So with the 16-bit microprocessor there are 576 places to store data. With the 32-bit microprocessor there are twice as many places to store data making the microprocessor faster. Another common term which is mentioned frequently in the paper is the oscil- lator or the time at which the processors "clock" ticks. The oscillator is the pace maker for the microprocessor which tells what frequency the microprocessor can proc- ess information, this value is measured in Mega-hertz or MHz. A nanosecond is a measurement of time in a processor, or a billionth of a second. This is used to measure the time it takes for the computer to execute an instructions, other wise knows as a cy- cle. There are many different types of companies of which all have their own family of processors. Since the individual processors in the families were developed over a fairly long period of time, it is hard to distinguish which processors were introduced in order. This paper will mention the families of processors in no particular order. The first microprocessor that will be discussed is the family of microprocessors called the 9900 series manufactured by Texas Instruments during the mid-70s and was developed from the architecture of the 900 minicomputer series (Titus, 178). There were five dif- ferent actual microprocessors that were designed in this family, they were the TMS9900, TMS9980A, TMS9981, TMS9985, and the TMS9940. The TMS9900 was the first of these microprocessors so the next four of the microprocessors where simply variations of the TMS9900 (Titus, 178). The 9900 series microprocessors runs with 64K memory and besides the fact that the 9900 is a 16-bit microprocessor, only 15 of the address memory circuits are in use (Titus, 179). The 16th address is used for the computer to distinguish between word and data functions (Titus, 179. The 9900 series microprocessors runs from 300 nanoseconds to 500 ns from 2MHz to 3.3MHz and even some variations of the original microprocessor where made to go up to 4MHz (Avtar, 115). The next microprocessor that will be discussed is the LSI-11 which was pro- duced from the structural plans of the PDP-11 minicomputer family. There are three microprocessors in the LSI-11 family they are the LSI-11, LSI-11/2, and the much im- proved over the others is the LSI-11/32 (Titus, 131). The big difference between the LSI-11 family of microprocessors and other similar microprocessors of its kind is they have the instruction codes of a microcomputer but since the LSI-11 microprocessor originated from the PDP-11 family it is a multi-microprocessor (Avtar, 207). The fact that the LSI-11 microprocessor is a multi-microprocessor means that many other mi- croprocessors are used in conjunction with the LSI-11 to function properly (Avtar, 207). The LSI-11 microprocessor has a direct processing speed of 16-bit word and 7- bit data, however the improved LSI-11/22 can directly process 64-bit data (Titus, 131). The average time that the LSI-11 and LSI-11/2 process at are 380 nanoseconds, while the LSI-11/23 is clocked at 300 nanoseconds (Titus, 132). There are some great strengths that lie in the LSI-11 family, some of which are the efficient way at which the microprocessor processes and the ability to run minicomputer software which leads to great hardware support (Avtar, 179). Although there are many strengths to the Only Once In A Lifetime Will A New Invention Come About To Touch Every Only once in a lifetime will a new invention come about to touch every aspect of our lives. Such a device that changes the way we work, live, and play is a special one, indeed. A machine that has done all this and more now exists in nearly every business in the U.S. and one out of every two households. This incredible invention is the computer. The electronic computer has been around for over a half-century, but its ancestors have been around for 2000 years. However, only in the last 40 years has it changed the American society. From the first wooden abacus to the latest high-speed microprocessor, the computer has changed nearly every aspect of people's lives for the better. The very earliest existence of the modern day computer's ancestor is the abacus. These date back to almost 2000 years ago. It is simply a wooden rack holding parallel wires on which beads are strung. When these beads are moved along the wire according to "programming" rules that the user must memorize, all ordina ry arithmetic operations can be performed. The next innovation in computers took place in 1694 when Blaise Pascal invented the first digital calculating machine. It could only add numbers and they had to be entered by turning dials. It was designed to help Pascal's father who was a tax collector. In the early 1800's, a mathematics professor named Charles Babbage designed an automatic calculation machine. It was steam powered and could store up to 1000 50-digit numbers. Built in to his machine were operations that included everything a modern general-purpose computer would need. It was programmed by--and stored data on--cards with holes punched in them, appropriately called punchcards. His inventions were failures for the most part because of the lack of precision machining techniques used at the time and the lack of demand for such a device. After Babbage, people began to lose interest in computers. However, between 1850 and 1900 there were great advances in mathematics and physics that began to rekindle the interest. Many of these new advances involved complex calculations and formulas that were very time consuming for human calculation. The first major use for a computer in the U.S. was during the 1890 census. Two men, Herman Hollerith and James Powers, developed a new punched-card system that could automatically read information on cards without human intervention. Since the population of the U.S. was increasing so fast, the computer was an essential tool in tabulating the totals. These advantages were noted by commercial industries and soon led to the development of improved punch-card business-machine systems by International Business Machines (IBM), Remington-Rand, Burroughs, and other corporations. By modern standards the punched-card machines were slow, typically processing from 50 to 250 cards per minute, with each card holding up to 80 digits. At the time, however, punched cards were an enormous step forward; they provided a means of input, output, a nd memory storage on a massive scale. For more than 50 years following their first use, punched-card machines did the bulk of the world's business computing and a good portion of the computing work in science. By the late 1930s punched-card machine techniques had become so well established and reliable that Howard Hathaway Aiken, in collaboration with engineers at IBM, undertook construction of a large automatic digital computer based on standard IBM electromechanical parts. Aiken's machine, called the Harvard Mark I, handled 23-digit numbers and could perform all four arithmetic operations. Also, it had special built-in programs to handle logarithms and trigonometric functions. The Mark I was controlled from prepunched paper tape. Output was by cardpunch and electric typewriter. It was slow, requiring 3 to 5 seconds for a multiplication, but it was fully automatic and could complete long computations without human intervention. The outbreak of World War II produced a desperate need for computing capability, especially for the military. New weapons systems were produced which needed trajectory tables and other essential data. In 1942, John P. Eckert, John W. Mauchley, and their associates at the University of Pennsylvania decided to build a high-speed electronic computer to do the job. This machine became known as ENIAC, for "Electrical Numerical Integrator And Calculator". It could multiply two Only Once In A Lifetime Will A New Invention Come About To Touch Every Only once in a lifetime will a new invention come about to touch every aspect of our lives. Such a device that changes the way we work, live, and play is a special one, indeed. The Microprocessor has been around since 1971 years, but in the last few years it has changed the American calculators to video games and computers (Givone 1). Many microprocessors have been manufactured for all sorts of products; some have succeeded and some have not. This paper will discuss the evolution and history of the most prominent 16 and 32 bit microprocessors in the microcomputer and how they are similar to and different from each other. Because microprocessors are a subject that most people cannot relate to and do not know much about, this paragraph will introduce some of the terms that will be in- volved in the subsequent paragraphs. Throughout the paper the 16-bit and 32-bit mi- croprocessors are compared and contrasted. The number 16 in the 16-bit microproces- sor refers how many registers there are or how much storage is available for the mi- croprocessor (Aumiaux, 3). The microprocessor has a memory address such as A16, and at this address the specific commands to the microprocessor are stored in the memory of the computer (Aumiaux, 3). So with the 16-bit microprocessor there are 576 places to store data. With the 32-bit microprocessor there are twice as many places to store data making the microprocessor faster. Another common term which is mentioned frequently in the paper is the oscil- lator or the time at which the processors ?clock? ticks. The oscillator is the pace maker for the microprocessor which tells what frequency the microprocessor can proc- ess information, this value is measured in Mega-hertz or MHz. A nanosecond is a measurement of time in a processor, or a billionth of a second. This is used to measure the time it takes for the computer to execute an instructions, other wise knows as a cy- cle. There are many different types of companies of which all hav e their own family of processors. Since the individual processors in the families were developed over a fairly long period of time, it is hard to distinguish which processors were introduced in order. This paper will mention the families of processors in no particular order. The first microprocessor that will be discussed is the family of microprocessors called the 9900 series manufactured by Texas Instruments during the mid-70s and was developed from the architecture of the 900 minicomputer series (Titus, 178). There were five dif- ferent actual microprocessors that were designed in this family, they were the TMS9900, TMS9980A, TMS9981, TMS9985, and the TMS9940. The TMS9900 was the first of these microprocessors so the next four of the microprocessors where simply variations of the TMS9900 (Titus, 178). The 9900 series microprocessors runs with 64K memory and besides the fact that the 9900 is a 16-bit microprocessor, only 15 of the address memory circuits are in use (Titus, 179). T he 16th address is used for the computer to distinguish between word and data functions (Titus, 179. The 9900 series microprocessors runs from 300 nanoseconds to 500 ns from 2MHz to 3.3MHz and even some variations of the original microprocessor where made to go up to 4MHz (Avtar, 115). The next microprocessor that will be discussed is the LSI-11 which was pro- duced from the structural plans of the PDP-11 minicomputer family. There are three microprocessors in the LSI-11 family they are the LSI-11, LSI-11/2, and the much im- proved over the others is the LSI-11/32 (Titus, 131). The big difference between the LSI-11 family of microprocessors and other similar microprocessors of its kind is they have the instruction codes of a microcomputer but since the LSI-11 microprocessor originated from the PDP-11 family it is a multi-microprocessor (Avtar, 207). The fact that the LSI-11 microprocessor is a multi-microprocessor means that many other mi- croprocessors are used in conjunction with the LSI-11 to function properly (Avtar, 207). The LSI-11 microprocessor has a direct processing speed of 16-bit word and 7- bit data, however the improved LSI-11/22 can directly process 64-bit data (Titus, 131). The average time that the LSI-11 and LSI-11/2 process at are